Math Problem Statement

(9⅓-2⅚+1¼)÷[1⅙+{2⅓+(6+5-4½)}]

Solution

Let's solve the expression step by step. The expression is:

(913256+114)116+{213+(6+5412)}\frac{(9 \frac{1}{3} - 2 \frac{5}{6} + 1 \frac{1}{4})}{1 \frac{1}{6} + \left\{2 \frac{1}{3} + \left(6 + 5 - 4 \frac{1}{2}\right)\right\}}

Step 1: Simplify the numerators and denominators

  1. Numerator: 913256+1149 \frac{1}{3} - 2 \frac{5}{6} + 1 \frac{1}{4}:

    • Convert to improper fractions: 913=283,256=176,114=549 \frac{1}{3} = \frac{28}{3}, \quad 2 \frac{5}{6} = \frac{17}{6}, \quad 1 \frac{1}{4} = \frac{5}{4}
    • Find a common denominator: Common denominator is 12:283=11212,176=3412,54=1512\text{Common denominator is } 12: \quad \frac{28}{3} = \frac{112}{12}, \quad \frac{17}{6} = \frac{34}{12}, \quad \frac{5}{4} = \frac{15}{12}
    • Perform the operation: 112123412+1512=9312=314\frac{112}{12} - \frac{34}{12} + \frac{15}{12} = \frac{93}{12} = \frac{31}{4}
  2. Denominator: 116+{213+(6+5412)}1 \frac{1}{6} + \left\{2 \frac{1}{3} + (6 + 5 - 4 \frac{1}{2})\right\}:

    • Convert to improper fractions: 116=76,213=73,412=921 \frac{1}{6} = \frac{7}{6}, \quad 2 \frac{1}{3} = \frac{7}{3}, \quad 4 \frac{1}{2} = \frac{9}{2}
    • Calculate inside the parentheses: [ 6 + 5 = 11, \quad 11 - \frac{9}{2} = \frac{22}{2}